

Statement of Verification

BREG EN EPD No.: 000515

Issue 02

This is to verify that the

Environmental Product Declaration provided by:

Mayflex UK Limited

is in accordance with the requirements of:

EN 15804:2012+A2:2019

and

BRE Global Scheme Document SD207

This declaration is for:

Cat6 & Cat6A unshielded (U/UTP) LSOH CPR (CE/UKCa) B2ca 4-pair Ethernet cables

Company Address

Mayflex UK Limited Unit 15, Junction Six Industrial Park, Electric Avenue Birmingham B6 7JJ

Signed for BRE Global Ltd

Emma Baker
Operator

14 August 2023

Date of this Issue

21 July 2023

'

20 July 2028

Date of First Issue

Expiry Date

This Statement of Verification is issued subject to terms and conditions (for details visit $\underline{www.greenbooklive.com/terms}.$

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000515

General Information

EPD Programme Operator	Applicable Product Category Rules
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE 2021 Product Category Rules (PN 514 Rev 3.0) for Type III environmental product declaration of construction products to EN 15804:2012+A2:2019.
Commissioner of LCA study	LCA consultant/Tool
Mayflex UK Limited Unit 15, Junction Six Industrial Park, Electric Avenue Birmingham B6 7JJ	LCA Tool: BRE LINA A2 LCA Consultant: Bala Subramanian
Declared Unit	Applicability/Coverage
1 metre of Excel solid conductor Cat6 & Cat6A unshielded (U/UTP) LSOH CPR (CE/UKCa) B2ca 4-pair Ethernet cables.	Other (please specify).Product Specific
EPD Type	Background database
Cradle to Gate with options	ecoinvent
Demonstra	tion of Verification
CEN standard EN 15	804 serves as the core PCR ^a
Independent verification of the declara □Internal	ation and data according to EN ISO 14025:2010 ⊠ External
	iate ^b)Third party verifier: ligel Jones

Comparability

b: Optional for business-to-business communication; mandatory for business-to-consumer communication (see EN ISO 14025:2010, 9.4)

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A2:2019. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A2:2019 for further guidance

Information modules covered

	Product		Const	ruction		Use stage Related to					ed to	End-of-life			Benefits and loads beyond the system	
					Re	ated to	the bu	lding fa	ibric	the bu						boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{V}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	$\overline{\checkmark}$								$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$	$\overline{\checkmark}$

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Made in PRC

Construction Product

Product Description

Excel solid conductor Cat6 & Cat6A unshielded (U/UTP) LSOH CPR (CE/UKCa) B2ca 4-pair Ethernet cables designed and manufactured to meet and exceed the ISO, CENELEC and TIA standards and supplied in 305m REELEX® boxes or on 500m reels. The cables deliver Class E / Class EA performance over distances of up 90 metres and support applications up to 10GBASE-T, 10 Gigabit Ethernet. Available in a range of colours. The Cat6A cable uses a non-metallic but reflective barrier tape which increases the performance of the cable and acts as a heat barrier, reducing the combustibility of the cable and giving a higher resilience to fire and decreasing the burn rate. CAT6 & Cat6A UUTP cables are available in a range of colours. In this EPD, Cat6A Cable U/UTP – 500M Reel Ice Blue with the weight of 0.054 kg/m has been taken as a representative among their group.

Product name:	Item Code / Colour	Weight (kg/m)
Cat6 Cable U/UTP 23AWG LSOH CPR B2ca 305m	190-071 – Box Violet	0.0468
Cat6 Cable U/UTP 23AWG LSOH CPR B2ca 500m	190-071-500 Reel Violet	0.0468
Cat6 Cable U/UTP 23AWG LSOH CPR B2ca 305m	190-073 Box Green	0.0468
Cat6 Cable U/UTP 23AWG LSOH CPR B2ca 305m	190-074 Box White	0.0468
Cat6 Cable U/UTP 23AWG LSOH CPR B2ca 305m	190-075 Box Orange	0.0468
Cat6A Cable U/UTP 23AWG LSOH CPR B2ca 500m	190-219 Reel Ice Blue	0.0544

Technical Information

Property	C AT6A	C AT6
Conductor surface	Bare	Bare
Conductor AWG	23	23
Conductor category	Class 1 = Solid	Class 1 = Solid
Total number of conductors	8	8
Stranding element	Pairs	Pairs
Conductor Insulation	PE	PE
Core identification	Colour	Colour
Overall screening	None	None
Conductor screening	None	None
Outer sheath material	Copolymer, thermoplastic (LS0H)	Copolymer, thermoplastic (LS0H)
Outer sheath colour	Ice Blue	Violet
Reaction-to-fire class according to EN 13501-6	B2ca	B2ca
Smoke development class according to EN 13501-6	s1a	s1a
Euro class flaming droplets/particles according to EN13501-6	d0	d0
Euro class acidity according to EN 13501-6	a1	a1
Halogen free (acc. EN 60754-1/2)	Yes	Yes
Flame retardant	In accordance with EN 60332-1-2 and EN 50399	In accordance with EN 60332-1-2 and EN 50399
Low smoke (acc. BS EN 61034-2)	Yes	Yes
Outer diameter approx.	7.0 mm	6.2 mm
Installation Temperature Range	0 to 50 °C	-10 to 60 °C
Operating Temperature Range	-20 to 60 °C	-10 to 60 °C
Category	6A	6
NVP value	68%	65%

Note: Technical properties of all products assessed within this EPD

Standard	Subject
ISO/IEC 11801-1:2017	Information technology - Generic cabling for customer premises: Part 1 General Requirements
IEC 61156-5:2020	Multicore and symmetrical pair/quad cables for digital communications - Part 5: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz - Horizontal floor wiring - Sectional specification
EN 50173-1:2018	Information technology. Generic cabling systems - General requirements
EN 50173-2:2018	Information technology. Generic cabling systems - Office premises

Standard	Subject
BS EN 50288-3-1:2013	Multi-element metallic cables used in analogue and digital communication and control. Sectional specification for unscreened cables characterised up to 250 MHz
EN 50399:2011+A1:2016	Common test methods for cables under fire conditions. Heat release and smoke production measurement on cables during flame spread test. Test apparatus, procedures, results
IEC 60332-1-2:2004 + A12:2020	Tests on electric and optical fibre cables under fire conditions. Test for vertical flame propagation for a single insulated wire or cable. Procedure for 1 kW pre-mixed flame
ANSI/TIA 568-D:2015	Balanced Twisted-Pair Telecommunications Cabling and Components Standards
IEC 60754-2:2014	Test on gases evolved during combustion of materials from cables - Part 2: Determination of acidity (by pH measurement) and conductivity
IEC 61034-2:2005+A2:2020	Measurement of smoke density of cables burning under defined conditions – Part 2: Test procedure and requirements
EN 50575:2014 + A1:2016	Power, control and communication cables — Cables for general applications in construction works subject to reaction to fire requirements
IEEE 802.3bt (Type 4)	Compliant to IEEE 802.3bt (Type 4)
RoHS	Compliant to the Restriction of Hazardous Substances
WFD	Compliant to Waste Framework Directive
SCIP	Compliant - Does Not Contain Substances of Concern in Products

Note: Technical Standards of all products assessed within this EPD

Main Product Contents

Material/Chemical Input	%
Copper	30-35
Polyethylene	15-20
LSOH (Co-polymer)	35-40
PET	0-5
Barrier Tape	10-15

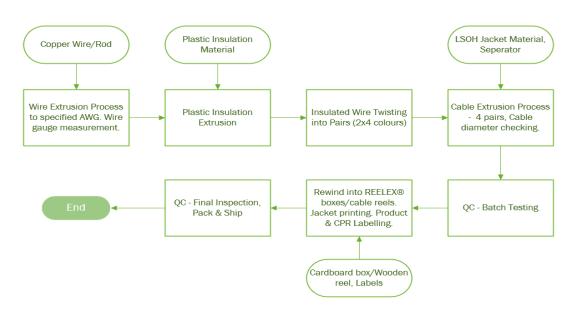
Note: Material composition of all products assessed within this EPD

Manufacturing Process

The manufacturing processes for these cables involves several stages of extrusion starting with the pure copper rod and finishing with the completed cable, which consists of multiple elements. The first process is to extrude pure copper rod through a series of precision dies, heated and pulled (extruded) to achieve the required gauge of the wire. This is a highly accurate process requiring that the wire diameter is continually monitored as it exits the extruder to ensure that its diameter remains constant.

The next stage is to apply the wire insulation which requires another extrusion process, where the wire is drawn through the extrusion machine whilst the molten plastic insulation is injected around the wire. The plastic insulation is colour coded, and this process is repeated 8 times to provide the 8 colours required for the final cable (blue, blue/white, orange, orange/white, green, green/white, brown, brown/white).

Each pair of wires then go to the next process which twists them together. 2 reels of insulated wire are spun and pulled simultaneously to provide a precise and consistent twist. Each pair is given a slightly different twist length. No 2 pairs are the same. This is critical for the performance of the finished cable. It is also critical that the twist length remains consistent to ensure good performance.


Once all 8 wires are twisted into their respective pairs, all 4 pairs are again extruded into the final cable. This involves drawing the 4 pairs through the final extrusion process. The pairs are drawn through a die together with a plastic separator, the LSOH cable jacket material (molten plastic) and any other elements that are used in the final cable design (such as non-metallic foils etc.). The pairs are also twisted slightly as they are extruded. As the cable exits the machine, it is passed through a water bath for cooling and its diameter is continuously measured.

The cable is coiled onto large reels initially and is finally re-reeled into REELEX® boxes (305m) or smaller wooden drums (500m) as required. The cable is tested to ensure compliance to the required standards. During the final boxing/reeling process, the cable is printed at 1m intervals with the cable details, batch information and the metre markings. The boxes/drums are also labelled with the cable and batch details, and the CPR information.

Process flow diagram

CAT6 & CAT6a Unsielded Cable

Construction Installation

Installation of data cables is generally carried out by manual labour, with teams of operatives pulling and dressing cables. No powered equipment or consumable items are used in this process, so no waste is generated during the installation. But there are some wastes at the end of the box, and it was assumed as 3% of the cables waste; they will be collected and sent to recycling.

End of life

Cables, that are the indispensable parts of electrical and electronic industry, consist of plastics, aluminium, and copper. At the end-of-life the cables are removed manually from the construction buildings. Waste cables are shredded into small chips first and the metallic parts are separated from the plastics physically by using gravity and electrostatic separation techniques (Celik et al., 2019).

Life Cycle Assessment Calculation Rules

Declared unit description.

1 metre of Excel solid conductor Cat6 & Cat6A unshielded (U/UTP) LSOH CPR (CE/UKCa) B2ca 4-pair Ethernet cables.

System boundary

This is a cradle-to-gate with options LCA, reporting all production life cycle stages of modules A1 to A3 and A4 and A5 (transportation and installation) and end of life stages C1-C4, and D in accordance with EN 15804:2012+A2:2019 and BRE 2021 Product Category Rules (PN 514 Rev 3.0).

Data sources, quality and allocation

The quantity used in the data collection for this EPD is the total quantity of CAT6A UUTP manufactured as a proportion of the total manufactured during the data collection period (01/01/21-31/12/21) that was calculated at 3.7%. Mayflex receives the data cables from their PRC manufacturing partners, therefore the transportation used to transfer the products from PRC to the UK is included in the LCA analysis. Other cables and products are manufactured in addition to the CAT6 & CAT6A U/UTP cables, therefore, the allocation of electricity and

water consumption and discharge are required, and this has been done according to the provisions of the BRE PCR PN514 and EN 15804. During the cable extrusion process no waste have been recorded.

The CAT6 & CAT6A U/UTP cables are available in a range of colours and may have slightly differing mass per metre because the cables are in 305-metre REELEX® boxes or on 500-metre reels, which results in a change in the mass per metre. So, in this EPD the cable which has the highest mass per metre is taken as a representative among the group. The LCA analysis has been performed using 0.054 kg/m, which is for the CAT6A UUTP 190-219 LSZH B2ca product. Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the ecoinvent 3.8 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804.

ISO14044 guidance. Quality Level	Geographical representativeness	Technical representativeness	Time representativeness
Very Good	Data from area under study.	Data from processes and products under study. Same state of technology applied as defined in goal and scope (i.e., identical technology).	n/a
Very Good	n/a	n/a	There is approximately 1-2 years between the Ecoinvent LCI reference year, and the time period for which the LCA was undertaken.

Specific European datasets have been selected from the ecoinvent LCI for this LCA. Manufacturer uses the national grid electricity for production, so therefore the national grid electricity dataset has been used for the LCA modelling (Ecoinvent 3.8). The quality level of time representativeness is also Very Good as the background LCI datasets are based on ecoinvent v3.8 which was compiled in 2021. Therefore, there is less than 5 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

Cut-off criteria

All raw materials and energy input to the manufacturing process have been included, except for direct emissions to air, water, and soil, which are not measured. The inventory process in this LCA includes all data related to raw material, packaging material and consumable items. Process energy, water use, and discharge are included, except the production waste and non-production waste.

LCA Results - CAT6A UUTP 190-219 LSZH B2ca with weight of 0.054 kg/m

(MND = module not declared; MNR = module not relevant; INA = indicator not assessed; AGG = aggregated)

	describing envir				t, t = iridio	ator riot de	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	oo – uggit	zgatou)
			GWP- total	GWP- fossil	GWP- biogenic	GWP- luluc	ODP	AP	EP- freshwat er
			kg CO ₂ eq	kg CO ₂ eq	kg CO ₂ eq	kg CO₂ eq	kg CFC11 eq	mol H⁺ eq	kg (PO ₄) ³⁻ eq
	Raw material supply	A1	1.81E-01	1.80E-01	4.10E-04	2.56E-04	1.07E-08	9.95E-03	7.76E-04
Due divet ete se	Transport	A2	1.30E-03	1.30E-03	1.11E-06	5.11E-07	3.01E-10	5.29E-06	8.39E-08
Product stage	Manufacturing	А3	4.75E-02	5.15E-02	-3.99E-03	1.94E-05	4.79E-10	2.68E-04	9.98E-06
	Total (Consumption grid)	A1-3	2.30E-01	2.33E-01	-3.58E-03	2.75E-04	1.15E-08	1.02E-02	7.86E-04
Construction	Transport	A4	2.77E-01	2.77E-01	3.75E-05	1.78E-04	5.74E-08	6.93E-03	1.14E-05
process stage	Construction	A5	1.14E-02	1.15E-02	-1.01E-04	9.55E-06	8.47E-10	3.14E-04	2.47E-05
97.2% - Recyclin	ng & 2.8% Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	2.08E-03	2.08E-03	1.77E-06	8.16E-07	4.81E-10	8.43E-06	1.34E-07
Life of file	Waste processing	C3	9.46E-02	9.44E-02	1.66E-04	2.36E-05	1.08E-08	1.46E-04	2.57E-05
	Disposal	C4	9.70E-04	9.69E-04	1.19E-06	2.22E-07	1.15E-10	1.45E-06	2.74E-07
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-2.62E-01	-2.62E-01	5.06E-04	-2.81E-04	-9.22E-09	-1.01E-02	-7.73E-04
100% - Landfill									
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	1.13E-04	1.13E-04	9.63E-08	4.44E-08	2.62E-11	4.59E-07	7.28E-09
	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	1.32E-01	1.32E-01	1.62E-04	3.01E-05	1.56E-08	1.97E-04	3.72E-05
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

GWP-total = Global warming potential, total; GWP-fossil = Global warming potential, fossil; GWP-biogenic = Global warming potential, biogenic; GWP-luluc = Global warming potential, land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, accumulated exceedance; and EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment

			EP-	EP-	POCP	ADP-	ADP-fossil	WDP	PM
			marine	terrestrial		mineral& metals			
			kg N eq	mol N eq	kg NMVOC eq	kg Sb eq	MJ, net calorific value	m³ world eq deprived	diseas inciden e
	Raw material supply	A1	5.15E-04	7.00E-03	2.01E-03	2.34E-04	3.24E+00	1.82E-01	2.47E-0
Product	Transport	A2	1.59E-06	1.74E-05	5.33E-06	4.53E-09	1.97E-02	8.86E-05	1.12E-1
stage	Manufacturing	А3	6.42E-05	6.21E-04	1.61E-04	5.67E-08	4.66E-01	-4.70E-03	3.86E-0
	Total	A1-3	5.81E-04	7.64E-03	2.17E-03	2.34E-04	3.72E+00	1.78E-01	2.87E-0
Construction	Transport	A4	1.72E-03	1.91E-02	5.00E-03	5.33E-07	3.71E+00	1.11E-02	1.26E-0
process stage	Construction	A5	1.94E-05	2.47E-04	7.05E-05	7.02E-06	1.36E-01	6.08E-03	9.55E-1
97.2% - Recy	cling & 2.8% - Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
End of life	Transport	C2	2.54E-06	2.78E-05	8.50E-06	7.22E-09	3.14E-02	1.41E-04	1.79E-1
End of me	Waste processing	С3	3.55E-05	3.35E-04	9.44E-05	2.07E-07	4.67E-01	1.48E-02	1.59E-0
	Disposal	C4	3.16E-07	3.11E-06	8.52E-07	1.93E-09	4.56E-03	1.42E-04	1.37E-1
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-5.55E-04	-7.39E-03	-2.22E-03	-2.32E-04	-4.64E+00	-2.34E-01	-2.77E-0
100% - Landf	ill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
End of life	Transport	C2	1.38E-07	1.51E-06	4.62E-07	3.93E-10	1.71E-03	7.69E-06	9.75E-1
LING OF INC	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+0
	Disposal	C4	4.30E-05	4.24E-04	1.16E-04	2.63E-07	6.21E-01	1.93E-02	1.86E-0
Potential benefits and loads beyond the system	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+(

EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment;

EP-terrestrial = Eutrophication potential, accumulated exceedance;

POCP = Formation potential of tropospheric ozone; ADP-mineral&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Depletion potential of the stratospheric ozone layer; WDP = Water (user) deprivation potential, deprivation-weighted water consumption; and PM = Particulate matter.

Parameters describing environmental impacts												
				ETP-fw	HTP-c	HTP-nc	SQP					
			kBq U ²³⁵ eq	CTUe	CTUh	CTUh	dimensionless					
	Raw material supply	A1	1.73E-02	7.88E+01	1.82E-09	1.30E-07	3.19E+00					
Droduct store	Transport	A2	1.01E-04	1.54E-02	4.98E-13	1.61E-11	1.35E-02					
Product stage	Manufacturing	А3	1.05E-03	1.39E+00	1.64E-11	5.41E-10	4.44E-01					
	Total	A1-3	1.84E-02	8.02E+01	1.84E-09	1.31E-07	3.64E+00					
Construction	Transport	A4	1.74E-02	2.46E+00	1.51E-10	1.93E-09	1.11E+00					
process stage	Construction	A5	7.07E-04	2.49E+00	5.83E-11	3.95E-09	1.19E-01					
97.2% - Recycling &	2.8% - Landfill											
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
End of Pfe	Transport	C2	1.61E-04	2.45E-02	7.94E-13	2.57E-11	2.16E-02					
End of life	Waste processing	СЗ	3.03E-03	1.78E+00	6.28E-11	7.04E-10	1.37E-01					
	Disposal	C4	2.98E-05	1.88E-02	6.05E-13	7.03E-12	9.73E-04					
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.70E-02	-7.77E+01	-1.77E-09	-1.28E-07	-3.29E+00					
100% - Landfill												
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Transport	C2	8.78E-06	1.33E-03	4.32E-14	1.40E-12	1.17E-03					
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Disposal	C4	4.05E-03	2.56E+00	8.23E-11	9.56E-10	1.32E-01					
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					

IRP = Potential human exposure efficiency relative to U235; ETP-fw = Potential comparative toxic unit for ecosystems; HTP-c = Potential comparative toxic unit for humans;
$$\label{eq:http-nc} \begin{split} &\text{HTP-nc} = \text{Potential comparative toxic unit for humans; and} \\ &\text{SQP} = \text{Potential soil quality index.} \end{split}$$

Parameters describing resource use, primary energy												
			PERE	PERM	PERT	PENRE	PENRM	PENRT				
			MJ	MJ	MJ	MJ	MJ	MJ				
	Raw material supply	A1	1.51E+00	0.00E+00	1.51E+00	2.40E+00	1.08E+00	3.48E+00				
Draduot ataga	Transport	A2	2.77E-04	0.00E+00	2.77E-04	1.93E-02	0.00E+00	1.93E-02				
Product stage	Manufacturing	А3	1.74E-01	4.77E-02	2.22E-01	1.59E+00	1.50E-03	1.59E+00				
	Total	A1-3	1.68E+00	4.77E-02	1.73E+00	4.01E+00	1.08E+00	5.09E+00				
Construction	Transport	A4	3.31E-02	0.00E+00	3.31E-02	3.64E+00	0.00E+00	3.64E+00				
process stage	Construction	A5	-6.48E-01	7.00E-01	5.19E-02	3.96E-02	1.13E-01	1.53E-01				
97.2% - Recycling	& 2.8% - Landfill											
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Transport	C2	4.43E-04	0.00E+00	4.43E-04	3.08E-02	0.00E+00	3.08E-02				
End of life	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	-7.43E-01	7.43E-01	0.00E+00				
	Disposal	C4	1.91E-04	0.00E+00	1.91E-04	-2.30E-03	6.80E-03	4.50E-03				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-1.46E+00	0.00E+00	-1.46E+00	-1.39E+00	0.00E+00	-1.39E+00				
100% - Landfill												
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
Food of life	Transport	C2	2.41E-05	0.00E+00	2.41E-05	1.68E-03	0.00E+00	1.68E-03				
End of life	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
	Disposal	C4	2.60E-02	0.00E+00	2.60E-02	-3.12E-01	9.25E-01	6.12E-01				
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials; PERM = Use of renewable primary energy resources used as raw

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding nonrenewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water							
			SM	RSF	NRSF	FW	
			kg	MJ net calorific value	MJ net calorific value	m³	
	Raw material supply	A1	5.66E-05	0.00E+00	0.00E+00	4.46E-03	
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	2.19E-06	
Floduct stage	Manufacturing	А3	0.00E+00	0.00E+00	0.00E+00	-6.50E-05	
	Total	A1-3	5.66E-05	0.00E+00	0.00E+00	4.39E-03	
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	2.75E-04	
process stage	Construction	A5	1.70E-06	0.00E+00	0.00E+00	1.50E-04	
97.2% - Recycling & 2.8% - Landfill							
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	3.50E-06	
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00	3.56E-04	
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	3.41E-06	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	-5.66E-03	
100% - Landfill							
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	1.90E-07	
	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	4.63E-04	
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories							
			HWD	NHWD	RWD		
			kg	kg	kg		
5 1	Raw material supply	A1	6.29E-02	2.33E+00	1.27E-05		
	Transport	A2	2.17E-05	3.86E-04	1.33E-07		
Product stage	Manufacturing	А3	2.32E-02	1.51E-01	1.00E-06		
	Total	A1-3	8.62E-02	2.48E+00	1.38E-05		
Construction	Transport	A4	4.71E-03	5.00E-02	2.56E-05		
process stage	Construction	A5	2.58E-03	7.43E-02	4.15E-07		
97.2% - Recycling 8	2.8% Landfill						
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00		
End of life	Transport	C2	3.46E-05	6.15E-04	2.13E-07		
	Waste processing	C3	0.00E+00	0.00E+00	0.00E+00		
	Disposal	C4	5.68E-04	2.77E-04	2.68E-08		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	-3.82E-02	-2.20E+00	-9.77E-06		
100% - Landfill							
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00		
	Transport	C2	1.88E-06	3.35E-05	1.16E-08		
	Waste processing	С3	0.00E+00	0.00E+00	0.00E+00		
	Disposal	C4	7.72E-02	3.77E-02	3.65E-06		
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other enviro	nmental inform	ation	describing o	utput flows	– at end of	life		
			CRU	MFR	MER	EE	Biogenic carbon (product)	Biogenic carbon (packaging)
			kg	kg	kg	MJ per energy carrier	kg C	kg C
	Raw material supply	A1	0.00E+00	1.96E-06	2.23E-08	5.86E-04	0.00E+00	0.00E+00
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Froduct stage	Manufacturing	А3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.08762
	Total	A1- 3	0.00E+00	1.96E-06	2.23E-08	5.86E-04	0.00E+00	0.08762
Construction	Transport	A4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
orocess stage	Construction	A5	0.00E+00	5.89E-08	6.68E-10	1.76E-05	0.00E+00	0.00E+00
97.2% - Recycling & 2.8% - Landfill								
	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
End of life	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Waste processing	СЗ	0.00E+00	5.41E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential benefits and loads beyond the system boundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
100% - Landfill								
End of life	Deconstruction, demolition	C1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Transport	C2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Waste processing	СЗ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Disposal	C4	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Potential penefits and coads beyond the system coundaries	Reuse, recovery, recycling potential	D	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Scenarios and additional technical information

Scenario	Parameter	Units	Results				
Scenario							
	Once the cables are manufactured, they will be transported to Mayflex's Birmingham site via wate transport and road transport. Once the cables are received, they will be distributed to the custome site.						
	Transport mode / Vehicle type	Water transport	Container Freight ship				
	Factory (made under contract in the PRC) – Southampton port	km	21694				
A4 Transport	Transport mode / Vehicle type	Road transport	16–32-ton lorry				
A4 – Transport to the building site	Southampton Port – Birmingham distribution unit (Mayflex)	km	266				
	Transport mode / Vehicle type	Road transport	16–32-ton lorry				
	Distance: Mayflex to customer site	Km	172				
	Capacity utilisation (incl. empty returns)	%	49				
	Bulk density of transported products	kg/m³	342				
A5 – Installation in the building	Installation of data cables is carried out by manual labour - teams of operatives pulling and dressing cables. No powered equipment or consumable items are used in this process, so no waste is generated during the installation. But there are some wastes at the end of the box, and it was assumed as 3% of the cables waste; this will be collected and sent to recycling.						
Cable wastes	Cable offcuts – Copper and plastic insulation	Recycled	0.00162 kg				
Packaging	Wooden Spool waste	Recycled	0.0478 kg				
	Reelex Box	Reused	0.0221 kg				
	Cable and wire pull out tube	Recycled	0.0019 kg				
End of life	Cables are removed manually from the building sites. Theref removing the cables from the building.	ore, no energy is asso	ciated while				
C2 – Transportation	Recovered cables are taken back by the registered broker	Road transport	16–32-ton lorry				
	Distance: Deconstruction unit to pre-processing unit	km	12.5				
C3 – Pre processing	CAT6A UUTP cables are made of copper, polymer, polyethylene, and other materials. At the el of-life, cables are removed manually from the building sites, and they will be sent to preprocessing unit. At the pre-processing unit, waste cables are shredded first to decrease their sit and the metallic parts are separated from plastics physically by using gravity and electrostatic separation techniques. The copper is recovered from other metallic elements by smelting and refining. The shredding and separation, and smelting processes have not been included in module C3 because it is assumed to be very small and are effectively negligible. (Celik et al., 2019).						
	Recovered cable to recycling	%	97.2				
C4 – Disposal	The recovered cable is sent recycling while a small portion is is considered to send to landfill	assumed to be unrec	overable whic				
	Unrecoverable cable to landfill	%	2.8				

Scenarios and additional technical information							
Scenario	Parameter	Units	Results				
	It is assumed that 97.2% of the cable used in the construction building is recovered for recycling and remaining 2.8% is sent to landfill. The calculation assumes that there is no yield-loss during the recycling process. Recycling (97.2%): 0.0541 kg/m. Landfill (2.8%): 0.00041 kg/m.						
	Copper – Recycled	kg/m	0.0172				
Module D	Polyethylene – Recycled	kg/m	0.0098				
	Co-polymer – Recycled	kg/m	0.0194				
	PET – Recycled	kg/m	0.0021				
	Barrier Tape - Recycled	kg/m	0.0054				

Summary

Interpretation results

The bulk of the environmental impacts are attributed to the manufacturing of CAT6A UUTP cable covered by information modules A1-A3 of EN15804:2012+A2:2019.

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A2:2019. London, BSI, 2019.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Çelik, C., Arslan, C. and Arslan, F., 2019. Recycling of waste electrical cables. Material Science & Engineering International Journal, 3(4), pp.107-111.